Statistical Inverse Formulation of Optical Flow with Uncertainty Quantification

نویسندگان

  • Jie Sun
  • Erik M. Bollt
چکیده

Optical flow refers to the visual motion observed between two consecutive images. Since the degree of freedom is typically much larger than the constraints imposed by the image observations, the straightforward formulation of optical flow inference is an ill-posed problem. By setting some type of additional “regularity” constraints, classical approaches formulate a well-posed optical flow inference problem in the form of a parameterized set of variational equations. In this work we build a mathematical connection, focused on optical flow methods, between classical variational optical flow approaches and Bayesian statistical inversion. A classical optical flow solution is in fact identical to a maximum a posteriori estimator under the assumptions of linear model with additive independent Gaussian noise and a Gaussian prior distribution. Unlike classical approaches, the statistical inversion approach to optical flow estimation not only allows for “point” estimates, but also provides a distribution of solutions which can be used for ensemble estimation and in particular uncertainty quantification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear model reduction for uncertainty quantification in large-scale inverse problems

We present a model reduction approach to the solution of large-scale statistical inverse problems in a Bayesian inference setting. A key to the model reduction is an efficient representation of the non-linear terms in the reduced model. To achieve this, we present a formulation that employs masked projection of the discrete equations; that is, we compute an approximation of the non-linear term ...

متن کامل

An MCMC Method for Uncertainty Quantification in Nonnegativity Constrained Inverse Problems

The development of computational algorithms for solving inverse problems is, and has been, a primary focus of the inverse problems community. Less studied, but of increased interest, is uncertainty quantification for solutions of inverse problems obtained using computational methods. In this paper, we present a method of uncertainty quantification for linear inverse problems with nonnegativity ...

متن کامل

Quantification of structural uncertainties in the k − ω turbulence model

We propose a method for building a statistical model for the structural uncertainties in the k − ω turbulence model. An inverse RANS problem is solved for a collection of randomly generated geometries to determine the turbulent viscosity that produces the flow field closest to that predicted by direct numerical simulation (DNS). A statistical model of the uncertainty in the turbulent viscosity ...

متن کامل

 The Quantification of Uncertainties in Production Prediction Using Integrated Statistical and Neural Network Approaches: An Iranian Gas Field Case Study

Uncertainty in production prediction has been subject to numerous investigations. Geological and reservoir engineering data comprise a huge number of data entries to the simulation models. Thus, uncertainty of these data can largely affect the reliability of the simulation model. Due to these reasons, it is worthy to present the desired quantity with a probability distribution instead of a sing...

متن کامل

Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario

A variety of methods is available to quantify uncertainties arising within the modeling of flow and transport in carbon dioxide storage, but there is a lack of thorough comparisons. Usually, raw data from such storage sites can hardly be described by theoretical statistical distributions since only very limited data is available. Hence, exact information on distribution shapes for all uncertain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.01230  شماره 

صفحات  -

تاریخ انتشار 2015